Pre-Requisite: Senior standing. Prior exposure to rotation matrices and coordinate transformations, MATLAB/Simulink programming experience, and probability.  Knowledge of state-space representations of systems would be desirable, however, not required.

Spring 2014 Schedule: M/W/F 3:00 p.m. – 4:00 p.m. in King Eng. Rm 117

Instructor: Dr. Stephen Bruder

Textbook: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems 2E by Paul Groves

Course Description:

This course will cover the basics of terrestrial location and navigation with an emphasis on practical exposure to the technology. In particular, the class will collaborate on the design and implementation of a GPS aided Inertial Navigation System (aided-INS) for use on a small UAV.

Key components of the course include: GPS fundamentals; an overview of inertial navigation technology; principles of strapdown inertial navigation systems including coordinate frames, attitude representation, and position, velocity, and attitude (PVA) determination in various coordinate frames; navigation sensor technology including a wide range of accelerometers and gyroscopes; sensor specifications and characterization; testing and calibration approaches; effects of inertial sensor error and compensation methods; analysis of real sensor data; and simulation and modeling using MATLAB/Simulink.

ACQNOWLEDGEMENT: This course has been developed in collaboration with Dr. Aly El-Osery, EE Dept., New Mexico Tech.

Topics Covered:

  1. Navigation Mathematics
    • Introduction to Navigation
    • Relevant Coordinate Frames
    • Kinematics
    • Earth Surface and Gravity
    • Frame Transformations
  2. Navigation Sensors and INS Mechanization
    • Accelerometers
    • Gyroscopes
    • Error Characteristics
    • Inertial Navigation Equations
  3. INS/GPS Integration
    • GPS
    • Kalman Filtering
    • Integration Architectures
    • System Model
    • Measurement Model
  4. System Example

Tentative Grading Structure:

Homework Assignments 30%
Two Mini-Projects (10% each) 20%
Final Project and Report 45%
Class Participation 5%

MATLAB Code Repository (Link):

Class Schedule:

Week # Dates Topic Assignments / Code Reading
1 Monday, Jan 6 -- Winter Break Holiday--    
Wednesday, Jan 8 Introduction (ppt, pdf) dead_reckoning.m Ch 1
Friday, Jan 10 The Four Coord Frames (ppt, pdf)   Sec 2.1
2 Monday, Jan 13 Rotation Matrices I (ppt, pdf)   Sec 2.2
Wednesday, Jan 15 Rotation Matrices II (ppt, pdf)

hwk 1, soln_1 (& files)

Sec 2.2
Friday, Jan 17 Rotation Matrices III (ppt, pdf)  

Sec 2.2

3 Monday, Jan 20 -- MLK Holiday --    
Wed, Jan 22 Rotation Summary   Sec 2.2
Friday, Jan 24 3D Translation (ppt, pdf)

hwk 2, soln_2 (& files)
in-class example

Sec 2.2
4 Monday, Jan 27 Angular Velocity (ppt, pdf)   Sec 2.2
Wed, Jan 29 Angular Velocity (ppt, pdf) VN200 IMU example (code) Sec 2.3
Friday, Jan 31 Linear Velocity (ppt, pdf)

hwk 3, soln_3 (& files)

Sec 2.3
5 Monday, Feb 03 Linear Velocity (ppt, pdf)   Sec 2.3
Wed, Feb 05 Earth Surface and Gravity (ppt, pdf)   Sec 2.4
Friday, Feb 07 Coordinate Frames Transformations (ppt, pdf)

hwk 4, soln_4 (& files)

Sec 2.5
6 Monday, Feb 10 Inertial Sensors (ppt, pdf) Ch 4
Wed, Feb 12 - class canceled -   Ch 4
Friday, Feb 14 Inertial Sensors & Errors (ppt, pdf)

hwk 5, soln_5 (files)

Ch 4
7 Monday, Feb 17 -- Presidents Day Holiday --    
Wed, Feb 19

IMU Comparison (data sheets)

Friday, Feb 21 Inertial Nav in the ECI Frame (ppt, pdf)   Sec 5.2
8 Monday, Feb 24 Inertial Nav in the ECEF Frame (ppt, pdf)

Project 1 - Solution

Sec 5.3
Wed, Feb 26 Inertial Nav in the Nav Frame (ppt, pdf)   Sec 5.4
Friday, Feb 28 Inertial Nav in the Nav Frame   Sec 5.2
9 Monday, March 03 Coarse self-alignment (ppt, pdf) Mathematica Code Sect. 5.6
Wed, March 05 Noise & Random Processes (ppt, pdf)    
Friday, March 07 Sensor Noise Characteristics (ppt, pdf)

BI_example.m & ARW_example.m

Sect 4.4 & 5.7
10 Monday, March 10 -- Spring Break --    
Wed, March 12 -- Spring Break --    
Friday, March 14 -- Spring Break --    
11 Monday, March 17

Project 2 Intro (ppt, pdf)

Project 2 - Solution  
Wed, March 19

INS Error Mech (ppt, pdf)

Friday, March 21 ECI Error Mech. (ppt, pdf)   Sec. 14.2.2
12 Monday, March 24 ECEF Error Mech. (ppt, pdf)   Sec. 14.2.3
Wed, March 26 Error Modeling and State Aug (ppt, pdf)  
Friday, March 28 Kalman Filtering Part I (ppt, pdf) MATLAB code Ch 3
13 Monday, March 31 Kalman Filtering Part II (ppt, pdf) MATLAB code Ch 3
Wed, April 02 Kalman Filtering Part II.5 (ppt, pdf) Project 3 Ch 3
Friday, April 04 The Global Positioning System (ppt, pdf)   Ch 3
14 Monday, April 07 GPS Part II (ppt, pdf)   Ch 8
Wed, April 09 Aided INS (ppt, pdf)   Ch 14.1
Friday, April 11 INS/GPS Integration Architectures (ppt, pdf)   Ch 14.3
15 Monday, April 14 INS/GPS System Integration Example(ppt, pdf)   Ch 14
Wednesday, April 16 Course Review (ppt, pdf)    
Friday, April 18

Final Project Presentations

16 Monday, April 21

Final Project Presentations

Wednesday, April 23

Final Project Presentations

  • Min "Fine Alignment"
  • Dalton "Geo-Sat"
  • Logan "Small San Nav"
  • Sam "GPS Localization"
Friday, April 25 Study day