Software-Defined Multi-Spectral Imaging System

Image and Information Fusion Experiments for Aviation and Marine Sensor Networks
Goals and Objectives

Feature Rich Software Defined Multi-Spectral Imaging System
- Geo-1: Southwestern Sonoran Desert, Colorado Plateau
- Geo-2: Alaska and US Arctic Environments
- In-situ monitors (rooftops, buoys, poles) – Share and Add Geos
- Light Aircraft (ERAU RV-12)
- Marine Vessel and UAS Detection, Tracking, Classification, Identification

Complimentary High Spatial, Temporal, Spectral Resolution
- Specific Geolocations, Campus, Airport, Marine Port
- Compliments Satellite Remote Sensing
- Cooperative ADS-B and S-AIS
- Active RADAR/LIDAR Systems
- Adds EO/IR and Acoustic Passive Sensing to Active Existing
- Enhance Information Aggregation (flightradar24.com, MarineTraffic.com)
- Networked Instruments with Image Fusion for Information Fusion
- Low Power (Battery of Fuel Cell Extended Operation) < 10 Watts Peak

Low-Cost, Simplified Use Sensor Fusion Instrument - Open Reference

Detect, Track, Classify and Identify Aerial and Marine Objects
- Determine Performance Methodology for EO/IR and Fusion Sensor Networks
- Compare Candidate Methods to Baseline
2015/16 – ADAC & ERAU Sponsored

- **UAA – ADAC, SmartCam**
- **ERAU (Undergraduate Research Team)**
 - Sam Siewert, PI, Assistant, Prof.
 - Demi Matthew Vis – AE/SE Student
 - Ryan Claus – SE Student
 - Nicholas DiPinto – SE Student
 - Arctic Power Team – Power Team Poster
- **CU Boulder – Embedded Systems Engineering Graduate Program**
 - Ram Krishnamurthy – MS EE
 - Surjith Singh – MS, ESE
 - Akshay Singh – ME, ESE
 - Shivasankar Gunasekaran – ME, ESE
 - Swaminath Badrinath – ME, ESE
- **Industry Advising/Collaboration Participants**
 - Randall Myers, Mentor Graphics

This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number, DHS-14-ST-061-COE-001A-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
2016/17 Team – ERAU Sponsored

- **ERAU – Drone Net**
 - Sam Siewert, PI, Assistant, Prof.
 - Demi Matthew Vis – AE/SE Student
 - Ryan Claus – SE Student

- **CU Boulder – Embedded Systems Graduate**
 - Ram Krishnamurthy – MS EE
 - Surjith Singh – MS, ESE
 - Akshay Singh – ME, ESE
 - Shivasankar Gunasekaran – ME, ESE
 - Omkar Seelam – ME, ESE

- **Industry Advising/Collaboration Participants**
 - Randall Myers, Mentor Graphics (PCB, CAD, Systems)
 - Joe Butler, Intel Corporation (IoT)
Open Reference SDMSI Configuration

- 2 Basler Pulse Visible Cameras
- 1 FLIR Vue LWIR Camera with ZnSe Window
- Jetson TK1, Panda Wireless, USB3 Hub, Power, NEMA Enclosure
USCG – Arctic Shield

Potential SDMSI Buoy and Pole Mounts to Enhance AIFC (Arctic Information Fusion Concept)

© Sam Siewert

http://www.uscg.mil/d17/ArcticShield/Documents/USCG%20Arctic%20operations.pdf
Smart Camera Deployment - Marine

- Land Towers (Light Stations, Ports, Weather Stations)
- Self-Powered Ocean Buoys
- Mast mounted on Vessels

http://www.uscg.mil/d17/cgcspars/
http://www.esrl.noaa.gov/gmd/obop/brw/
http://www.oceanpowertechnologies.com/
Smart Camera Deployment - Aerial

- UAV Systems - ERAU ICARUS Group
- Experimental Aviation and Small Aircraft - ERAU
- Kite Aerial Photography, Balloon Missions (ERAU, UAA, CU Boulder)

Sam Siewert – ERAU ICARUS Group

© Sam Siewert
Actual - Roof Mount Experiment

- Starting point – evolve to aircraft, buoy and UAS later
- Embry Riddle flight line provides lots of light aircraft traffic
- Simple UAS testing in Campus (semi-Urban) environment
- Wildlife – insects, bats, birds, etc.
Information Fusion Concepts

Integration and System of Systems Between ADS-B and S-AIS for Vessel / Aircraft / UAS Awareness

Smart Cameras Can Monitor and Plan Uplink Opportunity as Well as Wake up and Uplink
Ice Detection/Tracking Feasibility Tests

Clear Segmentation of Ice, Rock, Water, Drainage over Rocks, Vegetation – As Expected for 14 micron LWIR

Melt-water drainage
Preliminary Ice Tracking Feasibility

- Bergs of small size easily segmented for detection and tracking

- High contrast to water (air @ 63-52F 7/10/15)
Preliminary Vessel Tracking Feasibility

- Good detection of engines and exhaust in fog
- Idle or adrift vessels harder to detect than underway (active)

Exhaust stacks for Tanker at TAP

200mm DSLR Visible

25mm Visible

25mm Athermal Lens - LWIR
Visibility of Thermal Features in Fog

- Hot-spots (engines, exhaust, cabin, lights) segment well
- Improve with Common Intrinsic/Extrinsic Characteristics and Image Fusion
- Valdez Harbor, Alaska
Feasibility Testing in Marine Domain

- Vessel Detection, Tracking, Identification
- At Ports, Light Stations, and In Straits
- Integrate with Arctic Information Fusion Concept (S-AIS)

- Marguerite Ace Leaves Long Beach
- HD visible imaging of departures
- And transits with ID
- LWIR night/fog detection and tracking
- Correlation to S-AIS and DBMS
- (Field Test – June 2015, Long Beach)
Feasibility for SAR Ops / Port Security

Detect bodies in the water, Port trespassing, Complements USCG Aircraft FLIR Systems

Surfers in the Water
Hand-held, Cutter Mounted, Buoys
Complements Existing Helicopter and C130 FLIR
(Field Test – June 2015, Malibu)

Trespassers at Night Shown on Jetty
Hand-held, Port Drop-in-Place, Buoys
Complements Existing Security
Off-Grid Installations
(Field Test – June 2015, San Pedro)
Conceptual Configuration

Thermal Fusion Assessment

Panchromatic, NIR, RGB

Jetson Tegra X1 With GP-GPU Co-Processing

Saliency & Behavioral Assessment

Cloud Analytics and Machine Learning

Flash SD Card (local database)

LWIR

Many multispectral focal planes ...

2D/3D Spatial Assessment
Experimental System Block Diagram

- 2 Watts at Idle, Plus 1.5 Watts per Camera = 6.5W
- E.g. Sobel, 30Hz, 20 Mega Pixels/Sec/Watt, 7.3W Peak – SPIE Sensor Tech + Apps

1) Sync’d Capture
2) Resolution Match
3) Image Registration
4) Detection
5) Classification
6) Identification
Detection Experiments for Aircraft and UAS

Preliminary Roof-top Field Trials at ERAU Prescott

© Sam Siewert
Baseline Motion Trigger Detection

- Difference Images over Time (adjustable)
- Threshold - Statistically Significant Pixel Change
- Filters (Atmospheric, Cloud, Constant Background Motion) – Dispersion of Changes
- Detection Performance – **ROC**, PR-Curve, F-measure [TP, FP, FN, TN analysis]
- Classification/Identification - Confusion Matrix

https://en.wikipedia.org/wiki/Precision_and_recall

PR best for Image Retrieval
E.g. **https://images.google.com/**

ROC best for Target Detection

© Sam Siewert
Frame by Frame Analysis

- TP – Determined by Human Review
- Frame by Frame
- Alternative is by Physical Experiment Design
- “Autoit” Program to Analyze
Aircraft Detection Performance - Baseline

Video Links – Aircraft, Bugs, FP, TP+FP, [TN], [Full]

Aircraft ROC for Motion Detect

True Positive Rate

False Positive Rate

MD

RAND

© Sam Siewert 22
UAS Detection Performance – Baseline

Video Link – UAS+Aircraft, Bugs, FP, TP+FP, [TN], [Full]

Drone ROC for Motion Detect

© Sam Siewert
Candidate SOD (BinWang14) - Aircraft

- Modified to Run BinWang14 SOD => MD Baseline
- Video Links – TP+FP, [TN], [Full]
Candidate SOD (BinWang14) - UAS

- Modified to Run BinWang14 SOD => MD Baseline
- Video Links – TP+FP, [TN], [Full]

Drone ROC for Modified BinWang14

© Sam Siewert
Search and/or Development of UAS & Aircraft SOD + Classifier + Identification

- Likely Requires Custom Detection – SOD

- Classification Based on Shape, Behavior and Contrast/Color/Texture in Multiple Bands (RGB, NIR, LWIR)

- Considering Acoustic Cue Fusion

- Cross Check with ADS-B, RADAR/LIDAR Data

- Produce Improved flightradar24.com Meta-data

- Find Ghost UAS and Aircraft [Non-compliant], Log Others
Needs Debugging – Literally!

- Many Insects Detected in Visible to LWIR
- Opportunity to work on Bird / Aviation Interaction Testing
Summary and Future Work

- Methods to Evaluate UAS/Aircraft Shared NAS Instruments (EO/IR)
- Open Reference Design to Replicate (HW, FW, SW)
- Bench Testing – 2 Watts Idle, < 10 Watts Peak Operation
- Detection Performance Baseline to Compare To
 - Test Candidate SOD Algorithms
 - Deep Learning ANN
 - Research Customized SOD
- Please Download our Benchmarks, Detectors, Test Cases
 - https://github.com/siewertserau/fusion_coproc_benchmarks
 - https://github.com/siewertserau/EOIR_detection
- Open Source Hardware, Firmware, Software for Multispectral EO/IR and Information Fusion Applications
- Build a Drone Net – Campus, Port and at Multiple Geos!
Backup Slides and References
References

References

References

26flightradar24.com, ADS-B, primary/secondary RADAR flight localization and aggregation services.